

Ricerca, Trasferimento Tecnologico e Recruiting al distretto Navile: dipartimenti di Chimica, di Chimica Industriale e di Farmacia e Biotecnologie

The definition of innovative industrial processes for the dry manufacturing of lithium-ion battery electrodes

Department of Chemistry "Giacomo Ciamician", EnerCUBE group

COMAS S.p.A

Shoayb Mojtahedi Shoayb.Mojtahedi@unibo.it

National PhD Program in Sustainable Materials, Processes and Systems for Energy Transition

> 38th Cycle – Polito–UNIBO Supervisor: Prof. Francesca Soavi

Lithium-ion Battery production

Dry vs. Wet Electrode Manufacturing A solution for sustainability

Wet Coating Electrode Manufacturing

Slurry Preparation

Slurry Coating

Electrode Drying

Calendaring

Dry Coating Electrode Manufacturing

Lamination/Calendaring of Dry-Mixed Powder Mixtures

Lamination/Calendaring of Free-standing film

Comparison of Wet and Dry Electrode Manufacturing

Aspect	Wet Electrode Manufacturing	Dry Electrode Manufacturing
Environmental	Uses solvents like NMP, which require recovery but are	Solvent-free process, eliminating VOC emissions
Impact	recyclable.	and reducing environmental impact.
Energy Efficiency	Moderate; energy required for drying and solvent	High; bypasses drying and recovery steps, reducing
	recovery.	overall energy consumption.
Cost	Lower initial capital investment; Higher total cost.	Lower operational costs due to reduced processing
		steps and energy use.
Scalability	Well-established; widely implemented in commercial	Emerging technology; shows strong potential for
	battery production.	high-volume scalability.
Material Uniformity	Excellent, due to homogeneous slurry mixing.	Good, with improved control over porosity and
		coating thickness.

Transferring knowledge from lab activity up to production upscaling

Dry Coating at Laboratory Scale: Process & Performance

Active Dry Coating scale-up at COMAS R&D line: Process & Performance

Binder

Conclusion

- Dry coating represents a promising pathway toward enhancing the sustainability of lithium-ion battery electrode manufacturing.
- Its potential extends beyond batteries, offering valuable applications in other energy storage technologies such as supercapacitors and fuel cells.
- This advancement was made possible through the effective and synergistic collaboration between UNIBO and COMAS, which enabled the successful translation of laboratory-scale material innovations into the development of a preindustrial, scalable manufacturing line.

ACKNOWLEDGMENTS

This work has been carried out under the National PhD program in SUSTAINABLE MATERIALS, PROCESSES AND SYSTEMS FOR

ENERGY TRANSITION at the Department of Chemistry "Giacomo Ciamician", Alma Mater Studiorum University of Bologna, and

Department of Applied Science and Technology (DISAT), Politecnico di Torino. S. M. acknowledges COMAS SPA for co-funding the PhD

grant.

References

- 1. K. Padhi et al. *Electrochem. Soc.* **1997**, *144*, 1188.
- 2. Y. WanL. Zhong et al. (Tesla, Inc.), US-B2 10817590, **2004**.
- 3. S. Tschöcke et al. (Fraunhofer-Gesellschaft), DE-A1 102017208220, **2017**.
- 4. Tesla. Inc., "Tesla Completes Acquisition of Maxwell Technologies", can be found under https://ir. tesla.com/press-release/tesla-completes-acquisition-maxwell-technologies, 2019 (accessed Feb. 29 2024).
- 5. Tesla. Inc., "2020 Battery Day Presentation Deck", can be found under <u>https://digitalassets.tesla.com/</u> tesla-contents/image/upload/IR/2020-battery-day-presentation-deck, **2020** (accessed Feb. 29 2024).
- 6. M. Ank et al. J. Electrochem. Soc. **2023**, *170*, 120536.
- 7. European Chemical Agency, "ECHA publishes PFAS restriction proposal", can be found under <u>https://echa.europa.eu/-/echa-publishes-pfas-restriction-proposal</u>, 2023 (accessed Feb. 29 2024).
- 8. J. Liu et al. Adv. Mater. Technol. 2. **2017**, 1700106.
- 9. K. Uzun et al. ECS Meet. Abstr. MA2023-01. 2023, 533.
- 10. W. Jin et al. ChemElectroChem. 11. **2024**, e202400288.
- 11. Q. Wu et al. MRS Adv. 4. **2019**, 857–863.
- 12. B. Ludwig et al. Sci. Rep. 6. **2016**, 23150.

THANK YOU FOR YOUR ATTENTION

Department of Chemistry "Giacomo Ciamician", EnerCUBE group

COMAS S.p.A

Shoayb Mojtahedi

Shoayb.Mojtahedi@unibo.it

38th Cycle – Polito–UNIBO Supervisor: Prof. Francesca Soavi